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A model of centralized symmetric message-switched networks is considered, 
where the messages having a common address must be served in the central 
node in the order which corresponds to their epochs of arrival to the network. 
The limit N-* m is discussed, where N is the branching number of the network 
graph. This procedure is inspired by an analogy with statistical mechanics (the 
mean-field approximation). The corresponding limit theorems are established 
arid the limiting probability distribution for the network response time is 
obtained. Properties of this distribution are discussed in terms of an associated 
boundary problem. 
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1. I N T R O D U C T I O N  

One of the most popular tools in the theory of switching networks used for 
evaluating or estimating various network characteristics is the so-called 
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Poisson (or independence) approximation. Physically speaking, this means 
that in a given network, all the flows (of customers, messages, calls, 
packets, programs, etc., depending on the application domain) are set to be 
Poissonian and, in an appropriate sense, are independent for different 
servers. Such an approximation was proposed by Kleinrock (15) for cen- 
tralized starlike message-switched networks with the queueing discipline 
FCFS, first come--first served (with respect to the arrival epochs of 
messages in the subsequent nodes of their paths). The problem of 
rigorously proving this conjecture for that type of network was investigated 
by Dobrushin and Sukhov (m and Brown and Pollett. (9) For other network 
classes (circuit-switched, packet-switched, hybrid) the Poisson approxima- 
tion was studied rigorously in a series of papers by R.L. Dobrushin, 
M. Ya. Kelbert, A. N. Rybko, A. L. Stoljar, and Yu. M. Sukhov (we refer the 
reader to the review paper of Kelbert and Sukhov (14) for the references). 
These investigations were inspired essentially by a fruitful analogy between 
queueing network theory and statistical mechanics. Such an analogy may 
be established by considering the "size" parameters (the number of nodes 
or communication lines) as "extensive" characteristics and "the single- 
node" parameters (intensity rates of exogenous flows, probability distribu- 
tions related to a single customer) as "intensive" characteristics of a 
network. Various limiting procedures are then available, where extensive 
parameters grow to infinity and intensive ones remain fixed (or are related 
to extensive parameters in some other specific way). The Poisson 
approximation is associated thereby with the well-known mean-field 
approximation in statistical mechanics. The limiting mean-field picture is 
characterized by the fact that each single customer is "plugged" into an 
independent environment which is generated by other customers of the 
same type. Physically speaking, a maximal independence is attained, within 
"reasonable" limits provided by the network structure. 

In this paper we discuss the Poisson approximation for a class of 
message-switched networks which was introduced into the mathematical 
literature (in a more general form) by F. Baccelli et al. (see the review 
paper of Baccelli and Makowski ~3) and the references therein, and Baccelli 
and Liu(4)). The main feature of this type of network is the so-called syn- 
chronization constraint rule. In a simple form, this condition requires that 
for any pair of messages which have intersecting paths, the message which 
arrived earlier in the network (i.e., at the initial node of its path) must be 
served earlier in any node which is common to both paths. One result 
concerning synchronization constraint networks is that such a network has 
a nonzero capacity region. (5) 

We consider in this paper a two-stage feedforward queueing model 
with N single-server queues at the first stage, each with its own Poisson 
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input flow, and N single-server queues at the second stage. Each arriving 
message has two jobs to complete, one at each stage, requiring service times 
(lo, l~); the sequence of these vectors can be thought of as being handed out 
independently upon arrival according to a fixed distribution F. Each of the 
N first-stage queues defines a standard FCFS M/GI/1/~ queueing system 
(the one with Poisson input flow and i.i.d, service times). These N systems 
are entirely independent and all have the same arrival rate and the same 
service (transmission) time distribution. Each message, upon arrival at the 
first stage, randomly selects (with equal probability and independently of 
the past) one of the N queues to attend at the second stage. Order of 
service at any of the second-stage queues is determined by the following 
rule: messages must be served at a queue in the order in which they arrived 
exogenously to the first stage. In particular, this discipline is not work- 
conserving, because a waiting message cannot begin service until its 
predecessor has been served (and this predecessor may not be at the second 
stage yet). Equations (1.2) and (1.3) below describe the evolution of 
message waiting times. 

The result of the paper may be formulated so that in the limit as N 
tends to infinity, the message's stationary waiting times satisfy Eq. (1.6) 
(see below). Moreover, messages from any fixed Poisson exogenous flow 
have mutually conditionally independent second-stage waiting times given 
all their arrival epochs, first-stage waiting times, and service time vectors. 
Similarly, messages from a (Poisson) flow corresponding to a fixed second- 
stage queue have mutually conditionally independent first-stage waiting 
times given all their arrival epochs, second-stage waiting times, and service 
time vectors. Intuitively, this is based upon the fact that any two messages 
at a second-stage queue will have come from the same first-stage queue 
with negligible probability. In addition, when N is large, the arrival process 
to a fixed second-stage queue is approximately Poisson, since it is simply 
the superposition of many independent M/GI/1/~ departure processes, 
each one contributing a small proportion. Hence the limiting process is 
Poisson and with i.i.d, marks which are formed by the service time vectors 
and first-stage waiting times. The service on the second stage generates, in 
the N ~ ~ limit, nothing but the standard M/GI/1/~ queue. This leads to 
the picture outlined before. 

Let us now pass to a detailed description in a network terminology. 
We consider a starlike network which consists of a central node M and of 
a collection of periPheral sources Ca,..., Cu and peripheral addresses 
C'1 ..... C~v (see Fig. 1). Each oriented edge of the graph represents a com- 
munication line (server) which transmits the messages in the corresponding 
direction. It is convenient to place the server at the input of each line (see 
Fig. 2). We shall denote by aj the input line leading from Cj to M, as well 
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as the corresponding server, and by a) the output line leading from M to 
C) as well as the corresponding server, 1 ~< j ~< N. 

Suppose that the input of any peripheral server aj is given as an exter- 
nal flow Cj which is composed of exogenous messages. Every message from 
~j is identified with a triple y--  [t; (L, d)], where t = t(y) is the epoch of 
arrival into the network, L=L(y)  is the length vector (10, I1) with com- 
ponents 1 o = lo(y ) and ll = ll(y), and d =  d(y)e { 1,..., N} is the address. We 
can say that ~j is a random marked point process (rmpp) with marks 
(L, d) e ~2  x { 1,..., N}. We suppose that the rmpp's ~j, 1 ~< j <~ N, are i.i.d. 
Furthermore, we assume that ~j is Poisson of intensity 2 > 0 and with (con- 
ditionally) i.i.d, marks (L, d). We also assume that the marginal distribu- 
tion of the mark value is given by a fixed probability measure G on ~2  x 
{1,..., N}, which is the product F x  G, where F is a probability measure on 
~2  with marginals Fo and F1, and G is the equiprobability distribution on 
{ 1 ..... N}. Throughout the paper the measures F 0 and F1 are supposed to 
satisfy the following conditions: 

EFoexp(blo)<Oe for some b > 0 ,  Erlll<oo (1.1) 

(Ee denotes the expectation with respect to a probability measure P). 
For the basic notions and facts of the rmpp theory and its relations to 

queueing theory see, e.g., the book by Franken et al., (13) the monograph by 

ci El- 

C! 
3 

Fig. 2 
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Baccelli and Br6maud, (1) or the aforementioned review paper of Kelbert 
and Sukhov. ('4) 

The collection of rmpp's {~j, 1 ~ j ~ N} will be called the external 
family. 

The network transmission (service) rule is as follows. At any given 
time, each line aj, aj, 1 ~ j<~ N, can be used for transmitting at most one 
message and no preemption is allowed. A message y = It; (L, d)] which 
was initiated in a source Cj, i.e., in the rmpp ~j, must subsequently be 
transmitted along the lines aj and a) (the message-switching principle). 
Correspondingly, the network response time of the message y is divided 
into two parts. In the first stage, the message is waiting for the line aj and 
is then transmitted during the time l o. The queue at the server aj is formed 
by the rmpp ~j and governed by the usual FCFS discipline. By convention, 
we shall call this queue the input queue. Under our assumptions the input 
queue is merely the M/GI/1/oo queue with arrival intensity 2 and service 
time distribution F0. 

Immediately after completing the transmission along the line a j, the 
message starts its second stage. This stage consists in waiting for the line 
a} and then in transmitting along this line during the time ll. The queue 
for the server a} is called the output queue. It consists of the messages of 
the various rmpp's ~i, 1 ~< i~< N, with the same address. The output queue 
is governed by a specific discipline which is denoted by FEFS [first emitted 
(in the corresponding external rmpp ~i)--first seved]. This means that the 
message y must wait until all the messages with the same address d, which 
have been emitted in their sources before the epoch t, finish their transmis- 
sion along the line a}. 

Equivalently, one can think that at the moment of its arrival to the 
network a message starts waiting in both queues, input and output. But 
the service on the corresponding line a} may only start after completing the 
transmission along the line aj. 

After completing the transmission along the line a}, the message y 
leaves the network. 

We are interested in studying the waiting and response time distribu- 
tions for a single message. The formal procedure consists in introducing the 
corresponding random variables and in constructing a family of rmpp's 
{t/j} which provides a stationary solution to a system of equations 
associated with such a network. We have in mind to add a new component 
to the mark (L, d) of an external message, characterizing the process of 
transmission of the message along its path (aj, a)). It is convenient to take, 
as a new component, the vector W= (Wo, wl)E N2 with entries Wo, wl ) 0 ,  
which are the waiting times for beginning the transmission along the lines 
aj and a}, respectively (all the waiting times are counted from the epoch t 
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of the arrival to the network). The network response time for our message 
will be T1 = wl + ll, whereas To = wo + lo will be the sojourn time in the 
peripheral source. Of course, the values wo, Wl cannot be arbitrary: they 
will be coupled by the system of equations. 

The precise formulation of the problem is as follows. We want to con- 
struct the joint probability distribution of a family of rmpp's t/j, 1 ~< j ~< N, 
with marks (L, d, W)~ ~2+ x {1,..., N} x ~2  satisfying the two conditions: 

I. The projection (L, d, W) ~ (L, d) transforms the joint distribution 
of the family {t/j} into the joint distribution of the family {r 

II. With probability one, the marks (L, d, W) and the arrival epochs 
t obey the system of equations which is written below. 

We now formulate our system of equations. Let us start with some techni- 
cal remarks. In the main part of the paper, we use an approach based on 
the rmpp theory. In particularly, when speaking of a realization of a rmpp 
with marks in a (standard Borel) space K, we have in mind a a-finite 
integer-valued measure on R x K, where all the points enter with multi- 
plicity one. Such a property of all the rmpp's under consideration is 
guaranteed with probability one by our assumptions about the family {~j}. 

Given a family of realizations (O j, 1 ~ j ~< N, of rmpp's with marks in 
~2+ x {1,..., N} x ~2+ and a message p = It; (L, d, W)] belonging to (O;, we 
say that a message ~' of (oi (respectively, a message p" with d (9" )=  
d(35) = d, of any of (ok, 1 <~ k <~ N) precedes the message 37 on the input line 
a/(resp, on the output line a}) if: 

(i) t(35') < t(~) [resp. t(y') < t()5)]. 

(ii) There is no message )5" in (o, with t ( F ) <  t ( y * ) <  t(~) [resp. 
there is no message )~* in (ok, l<<.k<<.N, with t ( y ' )<t (p*)<t (p)  and 
d()5*) = d]. 

We consider a family of stationary rmpp's {qj} such that with probability 
one, for any j = 1,..., N and for every message 37 from @, there exists just 
one message )7' which precedes 2 on the line aj and just one message 37" 
which precedes 9 on the line a}, d = d()5), and such that the entries of the 
waiting time vectors W(jS), W()5'), and W()5") for the messages )5, )5', and 
)5", respectively, are related by the system of equations 

Wo()5) = max[0, Wo(Y) + lo( 9 ' ) -  ( t ( 9 ) -  t ( f ) ) ]  (1.2) 

and 

w1(37) = max [Wo()~) + 1o(37), Wl(35") + ll(.f") - (t(37) -- t(.f"))] (1.3) 
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We shall say that such a family {t/j} provides a stationary solution to the 
system of equations associated with the external family {~j}. 

Equations (1.2) and (1.3) translate the synchronization constraint 
described before. Namely, (1.2) is nothing more than the M / G I / 1 / ~  equa- 
tion for the actual waiting time in an input queue, whereas (1.3) indicates 
how the output queue is attended. In order to establish (1.3), one must 
keep in mind that the message 9 will start its service on the line a}, 
d =  d(37), precisely at time 

max[t(-9) + Wo(-9) + lo(37), t()7") + Wl(y tt) Av/1(-9")] 

A similar problem may be stated for the cutoff external family {r 
which is composed of the restrictions Cj,,0 = ~jlEt0 ~ ) of the rmpp's ~j to the 
half-axis [t ~ oe ). Let some positive initial workload z ~ be given, describing 
the initial condition. To any initial condition of this type and to any 
realization of the cutoff external family {~j.,0}, one can associate a unique 
transient solution of the system of equations (1.2), (1.3), (3~ which will be 
denoted by {t/j,,0,z0}. 

To guarantee the existence and uniqueness of a stationary regime in 
the network under consideration, we need the nonoverload condition given 
by 

2# 1 < 1 (1.4) 

where 

y 1 = max(Yo~, y;-~), #ol=EFolO,  # t l  = EFI[1 

Notice that the bound (1.4) does not depend on N. 
From general results given in Baccelli et aL, (2~ one can deduce the 

following assertion. 

T h e o r e m  1. Let the nonoverload condition (1.4) hold. Then there 
exists a unique stationary family {r/i } which provides the unique stationary 
solution of the system of equations (1.2)-(1.3) associated with the external 
family { ~j }. 

Moreover, for any initial condition z ~ 

lim tly, tO, zO (1.5) r/j = t~ 

The convergence of rmpp's means here the usual weak convergence 
(convergence in distribution). 

R e m a r k .  In fact, we have a stronger convergence where the projec- 
tions of rmpp's to any bounded time interval converge in total variation. 
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Our goal in this paper is to study the asymptotic behavior of the dis- 
tribution of the family {t/j} when N--* oo. The images of the rmpp's ~j and 

. under the projections (L, d) ~ L and (L, d, W) ~ (L, W) are denoted by 
j and flj, respectively. 

Before stating the main theorems, we introduce some definitions that 
will be repeatedly used throughout the paper. We consider the stochastic 
equation 

w = max(T, w+l-u)  (1.6) 

where the symbol ~ stands for equality in law, and where the random 
variables w, l, T, and u are nonnegative and mutually independent. The 
unknown is the distribution function of w, and the following statistics are 
known: l is distributed according to F, ,  u is exponentially distributed with 
parameter 2, and T is distributed like the stationary sojourn time in an 
M/GI/1/oe queue with parameter 2, Fo. We denote the distribution of the 
sojourn times T by 7to = ~Uo(2, Fo), and that of the waiting time by 
gt= gt(2 ' r0). 

As we will see later, under the stability condition (1.4), Eq. (1.6) has 
a unique solution, which will be denoted by ~b = q~(2, Fo, F1). 

We remind the reader that the Palm distribution of a given rmpp t/ 
describes a sort of conditional distribution generated by ,7 under the 
"condition" that, at a given time, a message appears in this rmpp. 

T h e o r e m  2. Assume that condition (1.4) is fulfilled. Given any 
finite set J c N, the rmpp's f/j = q(m), j 6 j ,  converge, as N--* 0% to limiting 
rmpp's f/J~), j~J, which are i.i.d. The marginal distribution of a single 
rmpp f/)~) has the following properties: 

The projection (L, W)~L  transforms the rmpp f/}oo) into the Ca) 
rmpp ~j. 

(b) The components Wo are solutions of Eqs. (1.2), and the Palm 
distribution of Wo (wrt the rmpp f/~))  coincides with ~u. 

(c) The Palm distribution of Wl is given by (b. 

R e m a r k .  The properties (a)-(c) do not determine completely the 
distribution of the rmpp f/~oo). In order to do so, one must specify the 
correlation between wl, the epochs of the point process, and the other 
components of the marks. 

Let Jr be the a-algebra generated by the epochs of f /~)  and by the 
sequence of i"andom variables L()5) and Wo()5). The following characteriza- 
tion of the conditional distribution of the sequence of variable w1()5) given 
J / h o l d s  true: 
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(d) For different messages of (371 ..... 37,) of 0) ~ ,  the variables w~(37~), 
1 ~< i ~< n, are mutually conditionally independent, given ~ .  

(e) The conditional distribution of w1(37 ) given J / i s  

max(wo(37) + lo(P), w + l -  u) 

where w, l, and u are mutually independent, and w has for 
distribution ~, l has for distribution F1, and u is exponentially 
distributed with parameter 2. 

It is useful to compare Theorem 2 with a "dual" assertion concerning the 
rmpp r/~ which is obtained when superposing the rmpp's {r/j}, j = 1 ..... N, 
and when extracting the points 37 with d()~) = k and omitting the value d(37) 
of the mark [i.e., by considering the reduced mark (L, W)]. 

T h e o r e m  3. Under the condition (1.4), for any fixed finite set 
J '  c N (or a collection of lines a~,, k ~ J ' )  the rmpp's r/; (iv), k ~ J', converge, 
as N ~  o% to the limiting i.i.d, rmpp's r/;(o~), k~J ' .  The marginal distribu- 
tion of a single l . .~v  . . . . .  ,~k'(~ has the following properties: 

(a) The projection (L, W ) ~  L leads to the rmpp ~k. 

(b) For different messages of the rmpp ,ik~"(~176 the marks Wo are condi- 
tionally i.i.d., given the ~r-algebra generated by the epochs of 
r/~(~), and with Palm distribution ~u. 

(c) The Palm distribution of wl in the rmpp r/;(oo) coincides with that 
in the rmpp g/~oo). 

Remark. Again these properties do not determine the distribution 
of the rmpp. The conditional distribution of the sequence w1(37) given dg 
is deterministic and given by Eq. (1.3). 

Notice that the distribution 7' that shows up in Theorems 2 and 3 may 
be written in a simple explicit form using the Pollaceek-Khinchin formulas. 
The distribution of ~/i can also be evaluated, in a more complicated way, 
for a particular case of exponential distributions for u and T (and even in 
the case where the distribution law for T has a rational Laplace-Stieltjes 
transform)J 2/ In Theorem 4 we give another characterization of q~ in the 
case where l and u have exponential distributions, and T has a general 
distribution. 

First, we replace (1.6) by the stochastic equation for the variable 
X ~ - w + l - u :  

X ~  l -  u + max(X, T) (1.7) 
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As before, we can assume that the variables X, T, l, and u in (1.7) are 
independent, Moreover, it is assumed that both l and u are exponentially 
distributed with expectations # 1 and 2 ~, respectively. 

Furthermore, we rewrite (1.7) in terms of the distribution functions: 

~ = g ,  (~o%) (1.8) 

Here ~- is the distribution function of the variable X, g is the probability 
density of the difference l -  u, o~o is the distribution function of the variable 
T, and the asterisk stands for convolution. Notice that (1.8) is a linear 
equation; we are interested in monotone nondecreasing solutions 
satisfying the conditions 

o ~ ( - ~ ) =  1 - ~ ( ~ ) = 0  (1.9) 

T h e o r e m  4. Let 2 < #, o-~0(x) = 0, for x < 0, and ~ dx E1 - ~o(X)] 
< ~ .  Then the (unique) bounded nondecreasing solution (1.8), (1.9) has 
the following properties: 

1. ~ is of class C1. 

2. ~ has one-side second derivatives ~ "  and ~ "  which satisfy the + 

equations 

~"_ (x) + a~ ' (x)  = ,~#g(x) [- 1 - ~o(x - 0)3 (1.10) 

~+~" (x) + a~ ' (x)  = 2 # ~ ( x ) [  1 - ~0(x + 0)3 (1.11) 

where a = # - L 

3. If x is a point of continuity for ~0, then ~ " ( x )  exists and satisfies 
the common equations ( 1.10)-( 1.11 ). 

4. For  x < 0  

~ ( x )  = ~-(0) exp 2x (1.12) 

5. For  x = 0  

5'(0) =,~(0) (1.13) 

The rest of the paper is organized as follows. In Section 2 we give a short 
direct proof of Theorem 1. Though, as we have noted before, the assertion 
of Theorem 1 may be deduced from general results of Baccelli et al., ~2~) the 
direct proof is useful because it provides some insight into the arguments 
used in the proofs of Theorems 2 and 3. The proofs of these theorems are 
given in Section 3, while Section 4 is devoted to the proof of Theorem 4. 
Some further properties of the boundary problem (1.10)-(1.13) are also 
discussed there. 
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2. E X I S T E N C E  A N D  U N I Q U E N E S S  OF A 
S T A T I O N A R Y  R E G I M E  

Since the distribution 5 u of Wo is well known, we shall concentrate on 
the distribution q~ of w 1. It is convenient to consider a slightly more 
general situation than in Theorem 1 and to give an alternative formulation 
of the existence and uniqueness theorem. The notations of this section are 
independent of those introduced in Section 2. 

Let {(u,, vn), ne7/} be a stationary ergodic sequence with values in 
x ~+ .  We are interested in stationary solutions of the equation 

w,= max(v,, w, 1 + u , _ l )  (2.1) 

We shall call (2.1) the generalized Lindley equation. 

Theorem 5. 1. If the sequence (un, v,) satisfies the relation 

Eu, < O, Evn < oo (2.2) 

then (a) there exists a unique stationary solution w,, n e 7/, to (2.1) and (b) 
for any value w~ 0 and any finite set I c  7/ 

lim Var[{w,,  n eI},  {w,(n ~ w~ n e l } ]  (2.3) 
n 0 ~ --oo 

where wn(n ~ w~ n>~n ~ is the solution of (2.1) with initial condition 
WnO ~ W O. 

2. Suppose that the values v~, neT/, are i.i.d, and independent of 
{u~}. Suppose in addition that a stationary solution {Wn} to (2.1) exists. 
Then 

Eun <~ O, Ev~ < oo 

If in addition we assume that the random variables un, n e Z, are i.i.d, and 
not identically 0, then 

Eun < O (2.4) 

Remarks.  1. Stochastic equations of the form (2.I) have been 
studied by Borovkov, (7) Chapter IV, Section 4, where a result similar to 
Theorem 5 has been obtained. See also Chapter 3 of ref. 6. 

2. In assertion l(a) of Theorem 5 we have in mind that there exists 
a strong stationary solution of (2.1) which is unique in the class of weak 
stationary solutions thereof (more precisely, in the class of weak solutions 
which are bounded in probability). See Kelbert and Sukhov 04) for details. 
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3. The result of Theorem 5 may be formulated in terms of coin- 
cidence of maximal and minimal solutions to (2.1) (see the papers of 
Brandt(8)). 

To prove Theorem 5, we use the following lemma. 

I . e m m a  2.1. Let {u,} be a stationary ergodic sequence. 

(i) If E ]u,] < 0% then (i/n) u~ ~ 0 a.e. when n ~ oo. 

(ii) If the random variables u, are i.i.d, and 

P(sup n -  lu n < oo ) > 0 
n>~l  

then Eu + < o% where u + = max(0, u,). 

Proof. (6) Let n ~> 1. We have 

n n n j =  1 

Clearly, ( l /n) Uo --+ 0 a.e. Furthermore, according to the strong law of large 
numbers, (i/n)~2~= l ( U j - U j _ l ) ~  E(ul -  Uo) a.e. This proves the assertion 
(i) of the lemma. 

If the random variables un are i.i.d., then 

But 

P sup un < N)  
n~>l  n 

: f i  P(u,<nN)= f l  [1-P(ul>~nN)] 
n = l  n = l  

~< f i  e x p ( - - P ( U l ) n N ) )  
n = l  

P(ul >~ nN) >~ dx P(Ul >~ xN) 
n = l  1 

and the condition Eu( = ~ dx P(Ul >~ x ) =  oo implies that 

P(supU"<N)=O 
\n~l n 

for any N >/1 and hence 

This proves (ii). 
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Proof  o f  Theorem 5. 1. A natural solution of (2.1) is given by 

L r ~ > l  n - - r < ~ m < n  

The RHS of (2.5) is obtained by passing to the limit r ~ oo in the following 
expression for w , ( n -  r, w~ the solution of the generalized Lindley equa- 
tion with the initial condition Wn-r = W0: 

w , ( n - r ,  w ~  +u~ 1 , 1 ) n - - 2 " [ - b l n - - 2 - ~ - b t n  1 , ' " ,  

v~ r+ l+U~- - r+ l+  "'" +Un--I, wO+un r+  ""  +U~_l) 

(2.6) 

Notice that w , ( n - r ,  w ~ is increasing in w ~ and, for w~ increasing 
in r. 

Our problem reduces now to checking whether the following asser- 
tions hold, under the condition (2.2): ( i)With probability one, the values 
wn defined in (2.5) are finite for all n s Z and, moreover, the supremum 
is reached for some finite r~>l; and (ii)for any n ~ Z  and w ~  the 
probability that w,(n - r, O) < w,(n - r, w ~ tends to zero as r ~ oo. 

The assertion (a) follows immediately from the strong law of large 
numbers for {u,} and assertion (i) of Lemma 2.1 for {v,}. To prove (b), 
compare the RHS of (2.6) for w~ 0 and w~ 0. It suffices to check that 
for any n ~ Z  and any w ~  

lim P ( w ~  . . .  +u._l>0)=0 
r ~ o o  

But this follows immediately from the law of large numbers for u,. This 
completes the proof of the assertion 1. 

2. Notice that the RHS of (2.5), which coincides with l imr~o  
w n ( n - r ,  0) (provided that this limit is finite), gives a solution of the 
generalized Lindley equation. Moreover, this is the minimal solution: for 
every solution vF~ the bound wn ~< v~n holds for all n ~Z. Therefore, the 
condition of the assertion 2 of Theorem 5 implies that the RHS of (2.5) is 
finite a.e. Hence, a.e. 

sup ~ /dm < O0 
r n - - r < m < n  

which implies that Eu n <<. 0 and, if un are i.d.d, and not identically 0, that 
Eu,, < 0. Furthermore, the following inequalities hold: 

822/66/3-4-9 
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\r>~ l n--r<~m<n 

r)<0) 
\ r>~N \ n--r<~m<n 

< - P ( s u p ( 1 - V n - r - 4 - 1 -  E u r n - - l ) < 0 )  
\ r>~N \ r  ?" n--r<~m<n 

<.P( inf  1 ~ Urn+sup vn-r <1 
r>~N r r>~N r n - - r < m < n  

~<P( inf  1 ~ -  u,.<A)+P(sup Vn--r  < I - A )  
\r>~N r n r<~m<n \r>~N r 

The last inequality holds for any A e R. Taking A < Eu., we get 

lim P ( i n f  1_ ~ u ~ < A ) = 0  
N ~ c ~  \ r > ~ N r n _ r ~ m <  n 

On the other hand, by assumption, lira P(wn < N) = 1, and hence, 

( '  ) lim P sup - v._ r < 1 -- A = 1 
N ~  \r>~N r 

Given e>0 ,  take N so large that P(sup~>~;v(1/r)v,_~>l-A)<e. Then 
the bound 

P sup > I - A  ~ P  sup 1 - A  
\ r ~ l  r \r<~N r 

+ P(sup\,~N V"-r>r l - A )  (2.7) 

implies that 

Vn r > ) lim P sup K ~<~ 
K ~  \r~>l r 

Therefore, for any ~ > O, 

Vn -- r 1 P sup < ~  >~1-~ 
\r>~l r 
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and hence, a.e. 

l 
s u p  - -  Vn  - r ~ 0(3 

r>~l  r 

By Lemma 2.1(ii), E v , <  oo. This proves the assertion2. Theorem 5 is 
proved. 

3. P R O O F  OF T H E  A P P R O X I M A T I O N  T H E O R E M S  

The proofs of Theorems 2 and 3 are based on the same kind of 
arguments and, to avoid repetitions, only one of these statements 
(Theorem3) will be proved. The modifications needed for proving 
Theorem 2 are immediate and are left to the reader. To start with, we also 
assume that the set J '  contains just one element, a~, k e N. 

. . . .  (N) 1 ~< k ~< N, t o ~ N, with marks We introduce the rmpp t/k, t0=~/k, t0, 
(L, W) e Re+ x N~, L =  (Io, 11), W =  (w0, Wl), which is obtained from the 
superposition of the rmpp's q j,,0 (=  q),N2), 1 ~< j ~< N, t~ N 1, by considering 
only the messages y with d ( y )  = k and by omitting the value d ( y )  from the 
mark. Taking into account that, due to the symmetry of our network, the 
distribution of the rmpp t/~,,0 (as well as of the stationary rmpp r/~) does 
not depend on k, we shall omit the index k whenever possible. The 
following assertion admits Theorem 3 as a Corollary, at least in the case 
s '=  {k}. 

T h e o r e m  6. Assume that the bound (1.4) holds. Then for any 
k e N and any bounded time interval I c  N, the following relation holds: 

lira Var[q;0(S)l~, q'(~ = 0  (3.1) 
t 0 ~  c o , N  ~ ::o 

where t/'(~ is the rmpp with marks (L, W) described in Theorem 3. 
To prove Theorem 6, we perform an auxiliary construction which was 
used, under a slightly different form, in the proof of Theorem 5. Let co be 
a realization of a rmpp with marks (L, W). Given t e ~, we set 

v,(co) = sup [ ~ l l ( y )  
t' < t L y e c o ,  t' < t ( y ) < t  

+ W o ( y F ( t ' , t ) )  + lo(yF(t  ', t ))  -- Wo(yL( t  ', t ))  

]+ 
- lo (yL( t  ', t ))  - (t - t ' )  (3.2) 



818 Baccelli e t  al. 

where yF(t ' ,  t) = yF(t ' ,  t, co) [respectively, yL(t ' ,  t) = yL(t ' ,  t, co)] is the first 
(resp. last) message of co in the time interval (t', t) w.r.t, the order of epochs 
of arrival. Due to (2,6), one gets immediately that for any message y e co, 
the following equality holds: 

Let 

wI(y) = Wo(Y) + /o (Y)  "q- Vt(y) 

z t (m) = sup[t '  < t: re(co) = O] 

(3.3) 

(3.4) 

and denote by co. the realization with marks (L, Wo), obtained from co by 
deleting the component w 1. For any t e N, u > O, and any pair of realiza- 
tions co and co' such that (a) co.l(, .,,3=co.l(~_~,,3 and (b) 
min(z,(co), z,(co'))> t -  U, taking tl such that 

max(z,(co), z,(co')) < t I < t 

we obtain that the following equality holds for every 7e (tl, t]: 

and hence 

vT( co ) = vT( co' ) 

Wl(y,  co)= w1(y,  co ~) 

for every message y e co l (,l,t? = co' 1 (tl, t]. 
Roughly speaking, z,(co) is the "backward memory length" of the 

random variables wl (y ,  co). Hence, to prove Theorem 6, it is sufficient to 
check that: 

I. For any e > 0 there exists u > 0 such that for all t~ R, all t >/t ~ 
and all N ~> 1, 

PIN)(zt < t -- U) < ~, Plg~)(zt < t -- u) < ~, P (~ l ( z  t < t - u) < e (3.5) 

where P}N) denotes the probability distribution of the rmpp q;0 (N~, P(~) 
denotes that of the rmpp r/'(~176 defined by the properties (a) and (c) figuring 
in Theorem 3 and the property mentioned in the remark following 
Theorem 3, and p~go) is the distribution of the cutoff rmpp r/~0 (~), which is 
obtained when replacing the reduced rmpp ~" by its restriction ~'1 (,0,oo). 

II. For any t e  N, any t~ t, and any u > 0 ,  

(3.6) lim Var{~IN)l(t_u,t), ~Ig~ = 0 
N ~  

lim Var{~(N)l( . . . .  o, ~(~)l(t .,o} =0  (3.7) 
g ~ o o  
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where ffl0 ) and ( ( ) d e n o t e  the rmpp's with marks (L, wo)eN2+xN+ 
obtained from q~0 () and t/'() by deleting the component w 1. 

We start with the proof of assertion I. From the definitions (3.2) and 
(3.3) it is easy to see that 

P(z, < t - u) 

< P (3t' < t - u: ~ ll(y) + Wo(yF(t ', t)) 
p~c.o:t' < t ( y ) < t  

+ lo(ye(t ', t)) + wo(yL(t ', t)) + lo(yL(t ', t)) -- (t -- t') > O) (3.8) 

Here (and below) P stands for any of the probability distributions p(N) 
- -  t o  

P(~) or P(~) figuring in (3.5). 
tO 

One can check that for u > 1, 

RHS of (3.8) 

~< P(3t '  e[n ,n+ l): 
n ' E Z : n ' < t - - u  

x ~ ll(y) + Wo(yF(t ', t)) + lo(yF(t ', t)) 
.y~co: t' < t ( y ) < t  

+ wo(yC(t ', t)) + lo(yC(t ', t)) > t - t') 

~< 2 e ( E ],(y) + Wo(/(n + 1, t)) 
n : n < t - - u  y c o : n < t ( y ) < t  

+ lo(yF(n + 1, t)) + y~o:._< ~(y)<~ + ~ m a x  [wo(y) + lo(y)] > t -- n -- 1) 

<~ ~ I P (  ~ l l(y)--M>�89 - M - l )  
n : n < t - - u  L- y ~ c o : n < t ( y ) < t  

+ P(wo(yF(n + 1, t)) + lo(yF(n + 1, t)) > �88 -- 2#--l)(t -- n)) 

+P(ysco:n<~t(y)<n+lmax [wo(y)+lo(y)]>�88 # 1)(t-n)) 1 (3.9) 

where 

M = E p  E /I(Y) 
yccu:t '  < t ( y ) < t  
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We have used here condition (1.4) ensuring that � 8 8  
Now notice that 

M <~ )~#-l(t-n) 

(this is an equality for p ( ~ / o r  for p~gl and Plg  ~, provided that n > t~ and 
hence 

�89 + 2 # - ~ ) ( t - n ) - M > ~  � 8 9  

By using Chebyshev's inequality, we obtain that for n large enough, 

{ ( RHS of (3.8) ~< C ~ Ee ~ l~ (y ) -M 
n<t--u y . . . . .  t{y)<t ( l - -n)  3 

1 
+ Ep[wo(yF(n + 1, t)) + lo(yF(n + 1, 0) ]  2 (t -- n) -------5 

+ E e l  max (wo(y)+lo(y))]2, 1 - ~  (3.10) 
y~co:n<~t (y )<n+ 1 t t - n ) - )  

where the constant C does not depend on t and N. Hence, it is sufficient 
to establish the following bounds, for n < t -  I: 

Ee ( , ..... ~<,,y)<t l l (y ) -  M 3 ) <  Cl( t -n )  3/2 (3.11) 

Ee[wo(yF(n + 1, t)) + lo(ye(n + 1, t))] e < C2 (3.12) 

and 

Ep[ max (wo(y) +/o(y))] 2 < C2 (3.13) 
y~co :n<~t ( y )<n+ l 

where the constants C1 and C2 are independent of n, t, and N. 
Finally, (3.tl) is a particular case of a bound obtained first by 

Dharmadhikari and Jodgeo (m) (see also the book by Petrov, ~ 
Chapter III, Section 5, and the paper of Fook and Nagajev(~2)). As to 
(3.12), this is nothing but the well-known bound for the M/GI/I/oc queue 
(see, e.g., Thorisson(18)). A similar meaning is extended to the bound (3.13). 

As for the proof of II, we observe that the probability to have, in any 
of the rmpp's t/~0 (N) and t/'(N), on a bounded interval ( t -  u, t), more than 
one message from the same peripheral source is O(1/N) and hence tends to 
zero. But otherwise, the restrictions ~,or'o(m11~, ~,,) and ~,0'~l~,_~.t) coincide. 

To prove Theorem 3 for the general case, it is sufficient to establish the 
following extension of Theorem 6. 
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T h e o r e m  7. Under the condition (1.4), for any finite set J '  c r~ and 
any bounded time interval I c  N, 

lira Var[{q~}J)ll, k~J '} ,  {t/;~(~)l,, k ~ J ' }  ~ =O 
t 0 ~  o o , N ~  oo 

where J - ' ( ~  k~ j,}0 denotes the collection of independent copies of the " t q k  , 

rmpp q'(~) with marks (L, W) figuring in Theorems 3 and 6. 

The key point in the proof of Theorem 7 is to check the bounds 

P~Ul(zk,,o < t-- U, k 6 J ' )  < ~ (3.14) 

P~~ to < t - u, k e J ' )  < e (3.15) 

P(~(z~,to < t - u, k ~ J ' )  < e (3.16) 

and the relations 

lim Var[{~v]01(,_,,t), keJ ' } ,  {ff(k~,I1,_,,,), k ~ J ' }  ~ = 0  
N ~ o O  

lira Var[{~Nq( ,  ,,,), k~J '} ,  {~} l ( , _ , . t ) ,  k e J ' }  ~ = 0  
N ~ a o  

(3.17) 

(3.18) 

where now P~N) denotes the joint probability distribution of the family of 
rmpp's ,~,(N) k6J ' ,  and p(oo) and P!,~ are the joint probability distribu- I l k ,  t , 

tions of the (independent) limiting rmpp's t/;~ (~), k~J' ,  and tlk, to'(~), k ~ J ;  
respectively. Correspondingly, r~(oo)~0 and {~oo)}0 are collections of inde- " ( ~ k , t  0 f 

pendent copies of the rmpp's {~o)}0 and {~(o~)}o with marks (L, Wo). The 
proofs of these estimates are similar to those of (3.5) and (3.6)-(3.7), 
respectively, and are omitted for the sake of brevity. 

4. S T A T I O N A R Y  S O L U T I O N  OF T H E  G E N E R A L I Z E D  L I N D L E Y  
E Q U A T I O N  A N D  T H E  A S S O C I A T E D  B O U N D A R Y  P R O B L E M  

The proof of Theorem 4 is immediate. Our probability density is of the 
form 

2~ 
g(x) = ~ {(exp 2x)[  1 -- 0(x)] + [exp(-- #x)]  O(x) }, x e N  (4.1) 

where 0 is the indicator function of the nonnegative half-axis ~+ .  For 
x # 0, we have 

g'(x) + ag'(x) = 2/2g(x) (4.2) 
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and for x = 0, 

g'(0 + ) -- g '(0--  ) = --)~# (4.3) 

Taking the first and the second derivatives of the equality (1.8), we arrive, 
in view of (4.2) and (4.3), at the assertions 1 and 2. For example, 

~"+ (x) = f dr ~ ( r )  ~o(r) g ' ( x  - r) - )~#~(x) ~o(X + O) 

which is equivalent to (1.11). The other statements are deduced by 
inspection. 

R e m a r k .  In the particular case where 

~o(X) --= 1 - e x p ( -  vx), x~>0 

with v > 0 ,  Eqs. (1.10), (1.11) take the form 

~ " ( x ) + a ~ ' ( x ) = 2 p e x p ( - v x ) 9 ( x ) ,  x > 0  

which, after the change of variables 

t = - -  exp - v 
-9 

where ~ = a/v, becomes 

~ / , , + 1 ~ # _  1+-]2 q / = 0  (4.4) 
t 

Equation (4.4) is a Bessel-type equation. Its general solution is given by a 
linear combination 

~ = clio(t) + c2K~(t) 

where I s is the modified Bessel function and K~ is the Macdonald function, 
both of order ~. The constants c 1, c2 may be found from the constraints 
(1.9). A similar formula was obtained by Baccelli et aL (2) 

A solution of the stochastic equation (1.6) [or, equivalently, a non- 
decreasing solution ~- of the functional equation (1.8) with the constraints 
(1.9)] may be interpreted as a stationary solution of the generalized 
Lindley equation (2.1). It seems interesting to investigate the connection 
between solutions to (1.8) and solutions to (1.10)-(1.13) (we shall call the 
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last problem the associated boundary problem). To make the idea more 
transparent, we consider a more general situation. Let ~ be a differential 
operator with constant coefficients of order n > 2: 

d ~ d - - !  d + b o ,  
~ = ~ x ~ + b ~  a d x , - a  + . . . - -}-bid X 

x ~ N  (4.5) 

and let hi, h2 be two solutions of the equation 5eh = 0 such that 

h,(0) = h,(0), hi(0 ) = hi(0 ) ..... h~ ' - ' ) (0)  = h~ ~-'~(0) (4.6) 

and 

We set 

h ~ ' -  '~(0) - h ( ; -  1~(0) = c (4.7) 

g = ha 0 + ha(1 - 0) (4.8) 

and consider the functional equation (1.8) supposing that ~ is a locally 
bounded measurable function. Denote by ~ [ = d ( n ,  g, , ~ ) ]  the class of 
measurable functions Y such that: 

(i) o~Y0 is locally bounded. 

(ii) For  any k = 0,..., n, the integral g(k),  (-~-~o) converges. 

L e m m a  4 .1 .  

1. 

2. 

3. 

Let , ~ e d  be a solution of (1.8). Then: 

is of class C n a. 

If J0 is of class C o (continuous), then ~ is of class C". 

For  any x ~ N, 

2p+, g ( x )  - c ~ ( x )  ~o(X+, - o )  = o (4.9) 

where 5~ denotes the left-hand (respectively, right-hand) version of 5e. 

Conversely, let -~o be continuous and let r [ = ~ ( n ,  g)]  denote the 
class of functions ,~ e C n such that: 

(i) The integrals g �9 ~-(k) converge, k = 0,..., n. 

(ii) g * Y(~) = g(~) * ~ ,  k = 0 ..... n. 

L e m m a  4.2. Assume that the constant c in (4.7) is nonzero. Then 
any ~ - e ~  satisfying (4.9) gives a solution to (1.8). 
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The proof  of both  Lemmas  4.1 and 4.2 is an immediate extension of 
that of Theorem 4 [-the case of  Theorem 4 corresponds to ~ given by the 
RHS of (4.2)]. Notice that  the equat ion 5eh = 0 has solutions ha, h2 such 
that  the function (4.8) is nonnegative and integrable iff the characteristic 
polynomial  ~ ( s )  has at least one root  on the negative half-axis and at least 
one roo t  on the positive half-axis. 

Concluding this section, we formulate some problems which are of 
interest in this context. Suppose an opera tor  ~ of the form (4.5) is given, 
and hi ,  he are solutions of  5eh = 0 such that  the function (4.8) is non-  
negative and integrable. Let ~o be nonnegative,  nondecreasing, and locally 
bounded  (or even globally bounded) .  

1. When  does Eq. (1.8) have nondecreasing and/or  nonnegative 
solutions? 

2. When  does Eq. (1.8) have bounded  solutions? 

3. When  does Eq. (1.8) have a unique solution (up to the multi- 
plicative constant)?  
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